Differential effects of fibroblast growth factor and tumor promoters on the initiation and maintenance of adipocyte differentiation
نویسندگان
چکیده
Fibroblast growth factor (FGF) has been shown to inhibit the differentiation of myogenic and adipogenic cell lines without inducing a proliferative response. We have previously shown that agents capable of activating protein kinase C (PKC), such as FGF and the phorbol ester tetradecanoyl phorbol-13-acetate (TPA), inhibit the differentiation of the adipogenic cell line TA1, as measured by the rapid loss of adipocyte-specific RNAs. We report here that the treatment of fully differentiated TA1 adipocytes with FGF at 10 ng/ml induces the reversal of adipocyte differentiation, even in cells where PKC activity has been down-regulated by TPA pretreatment. In contrast, TPA or lower concentrations of FGF (1 ng/ml), both effective inducers of c-fos RNA in adipocytes, fail to reverse adipocyte differentiation. The adipocytes, however, will extinguish differentiation-specific functions in response to TPA by the addition of a calcium ionophore. Therefore, we propose that there are two FGF-sensitive pathways in TA1 cells: one responsible for the initiation of differentiation (TPA sensitive) and another required for maintenance of the adipose phenotype (TPA insensitive). These results suggest that activation of two distinct signaling pathways--one PKC and calcium dependent, the other FGF activated but PKC independent--are capable of inhibiting the biochemical events responsible for the maintenance of adipocyte differentiation.
منابع مشابه
The role of fibroblast growth factor receptor 2 (FGFR2) in differentiation of bovine spermatogonial stem cells (SSCs)
The receptors 1 and 2 of fibroblast growth factor (FGFR1 and FGFR2, respectively) have been observed in all types of testicular cells. Culture on extracellular matrix (ECM) has been observed to lead to initiation of differentiation in spermatogonial stem cells (SSCs). The present study was carried out to investigate whether FGFR1 and FGFR2 play a role in SSCs differentiation. Following isolatio...
متن کاملThe effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells
Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...
متن کاملEffect of Simulated Microgravity Conditions on Differentiation of Adipose Derived Stem Cells towards Fibroblasts Using Connective Tissue Growth Factor
Background: Mesenchymal stem cells (MSCs) are multipotent cells able to differentiating into a variety of mesenchymal tissues including osteoblasts, adipocytes and several other tissues. Objectives: Differentiation of MSCs into fibroblast cells in vitro is an attractive strategy to achieve fibroblast cell and use them for purposes such as regeneration medicine. The goal of this s...
متن کاملDetermination of Vascular Endothelial- and Fibroblast-Growth Factor Receptors in a Mouse Fibrosarcoma Tumor Model Following Photodynamic Therapy
The role of angiogenic molecules, like vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) in tumor angiogenesis was well confirmed. Photodynamic therapy (PDT) action is, to very high degree, based on tumor vasculature damage. Therefore, it seemed to be important to evaluate growth factor receptors after PDT. The extent of receptor expression was studied by immuno-histo...
متن کاملThe Effect of Fibroblast Growth Factor 21 on a Cellular Model of Alzheimer's Disease with Emphasis on Cell Viability and Mitochondrial Membrane Potential
Background and Objective: Alzheimer’s disease (AD) is a neurodegenerative disorder which is associated with extracellular accumulation of amyloid beta (Aβ) plaques. AD is accompanied by mitochondrial dysfunction and energy metabolism reduction. Fibroblast growth factor 21 (FGF21) is an endogenous polypeptide which its beneficial effects have been demonstrated on mitochondrial function, energy m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 109 شماره
صفحات -
تاریخ انتشار 1989